Table of contents

Foreword

Methodology and research history
1. Age determination of reindeer (Rangifer tarandus) based on postcranial elements 11
 Liselotte M. Takken Beijersbergen and Anne K. Hufthammer

2. Dr W.K.J. Schoor and the Frisian Terp Dog 21
 Egge Knol

Prehistory
3. Butchered large bovids (Bos primigenius and Bison priscus) from the Palaeolithic throwing spear site of Schöningen 13 II-4 (Germany) 33
 Thijjs van Kolfschoten, Monika Knul, Efi Buhrs and Mirthe Gielen

4. Holocene fauna from brook valleys in the southern Netherlands 47
 Theo P.J. de Jong

5. An Early Atlantic Mesolithic site with micro-triangles and fish remains from Almere (the Netherlands) 61
 Marcel J.L.T. Niekus, Dick C. Brinkhuizen, André A. Kerkhoven, Jerry J. Huismans and Dick E.P. Veeltuizen

6. Three maritime bell beakers decorated with shells from the Netherlands 79
 Erik Drent and Laure Salanova

7. Hunting the Bezoar Goat: Sympathetic Magic in Early Bronze Age Arslantepe 85
 Alice M. Choyke

8. Only for consumption? Bird exploitation at Hauterive-Champréveyres (Neuchâtel, Switzerland) during the Late Bronze Age 95
 Jacqueline Studer

9. Changes in prehistoric landscapes: archaeozoological data on Poduri-Dealul Ghindaru tell (Bacau County, Romania) 105
 Luminita Bejenaru and Simina Stanc

10. Of dogs and man. Finds from the terp region of the Northern Netherlands in the pre-Roman and Roman Iron Age 111
 Annet Nieuwhof

Roman period
11. The scurred cattle of the Roman period in the Netherlands 123
 Arjan Hullegie

12. Hornless (pollled) cattle in the Netherlands: a Roman-period phenomenon 129
 Roel C.G.M. Lauwerier and Frits J. Laarman

Medieval period
13. An insight into animal exchange in Early Medieval Oegstgeest: a combined archaeozoological and isotopic approach 141
 Inge M.M. van der Jagt, Lisette M. Kootker, Thijjs van Kolfschoten, Henk Kars and Gareth R. Davies

14. 'Leffinge - Oude Werf': the first archaeozoological collection from a terp settlement in coastal Flanders 153
 Anton Eryvynck, Pieterjan Deckers, An Lentacker, Dries Tys and Wim Van Neer

15. The animal remains from the wreck of the cog from Wismar-Wendorf (15th century AD) 165
 Dirk Heinrich

Post-medieval period
16. Possible evidence for hawking from a 16th century Styrian Castle (Bajcsa, Hungary) 173
 Erika Gál

17. Show me your hawk, I'll tell you who you are 181
 László Bartosiewicz
9 Changes in prehistoric landscapes: archaeozoological data on Poduri-Dealul Ghindaru tell
(Bacau County, Romania)

Luminita Bejenaru and Simina Stanc

Introduction
The Tell of Poduri-Dealul Ghindaru is located in the county of Bacau, in eastern Romania (46°27'59" N, 26°32'10" E; Figure 1). The site stands at 429 m above sea level on a 30 m-high terrace on the right bank of the Tazlau Sarat river and has a known extent of c. 1.2 ha.

Research at Poduri-Dealul Ghindaru began in the 1979-1996 period, under the direction of the archaeologist Dan Monah. Later, in 2000-2007, extensive archaeological work was carried out, under the direction of the archaeologists Dan Monah and Gheorghe Dumitroaia. Excavators studying the stratification over some 27 campaigns have identified levels belonging to the Precucuteni and Cucuteni Chalcolithic cultures and to the Early Bronze Age (Monah et al. 2003). The first chalcolithic inhabitants of Precucuteni culture settled at Poduri-Dealul Ghindaru around 5820 BP, which corresponds to the period 4780-4619 cal. BC. The Cucuteni A level has been dated between 4665-4050 cal. BC. (Monah et al. 2003).

Archaeozoological analyses began in 2001-2002, carried out by Balasescu and Radu. Their research focused on the taxonomic frequency distributions of the remains in the faunal assemblages (Monah et al. 2001; 2002). Later, Cavaleri and Bejenaru (2009), Bejenaru et al. (2009), Oleniuc (2010), and Bejenaru (unpublished data) were interested in subsistence patterns associated with Chalcolithic and Bronze Age settlements in Poduri-Dealul Ghindaru.

A ritual deposition of two pig skeletons in the Cucuteni level of the Tell was discussed by Balasescu (2009). During the 2005 campaign, an unusual deposit of 25 astragali (twenty-one of the astragali from cattle, three from red deer, and one from sheep/goat) was discovered in the Cucuteni A level, dated to 4662-4465 cal. BC. (Mantu 1998). It was interpreted as a ritual deposit designed to bring good fortune to a new dwelling (Bejenaru et al. 2010).

Assemblage composition and temporal analysis
As indicated in Table 1, mammal remains are predominant (about 99%); birds, fish and molluscs are represented by less than 1% of the identified assemblages. In the group of identified mammals, Artiodactyls make up 96% of the total identified mammal assemblage. Fewer remains come from the other groups: Carnivores (2.28%), Perissodactyls (0.37%), Lagomorphs (0.23%) and Rodents (0.21%). Within the artiodactyl order, domestic artiodactyls dominate, and cattle remains are more numerous than those of sheep/goat and pig.

The proportions of domestic mammals show a progressive increase in time, from 86% in Cucuteni A to 92% in Bronze Age; which indicates the importance of animal husbandry (Table 1).
Table 1: Frequency of mammalian taxa from Poduri-Dealul Chindaru (NISP=number of identified specimens).

<table>
<thead>
<tr>
<th>Order</th>
<th>Species</th>
<th>Chalcolithic Cucuteni A (Cavaleriu & Bejenaru, 2005)</th>
<th>Chalcolithic Cucuteni B (Oleniciu, 2010)</th>
<th>Bronze Age (Bejenaru, unpublished data)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NISP</td>
<td>%</td>
<td>NISP</td>
<td>%</td>
</tr>
<tr>
<td>Artiodactyla</td>
<td>Bos taurus</td>
<td>1895</td>
<td>58.1</td>
<td>3465</td>
</tr>
<tr>
<td></td>
<td>Ovis aries/Capra hircus</td>
<td>519</td>
<td>15.9</td>
<td>3029</td>
</tr>
<tr>
<td></td>
<td>Sus scrofa domesticus</td>
<td>339</td>
<td>10.4</td>
<td>1402</td>
</tr>
<tr>
<td>Carnivora</td>
<td>Canis familiaris</td>
<td>57</td>
<td>1.7</td>
<td>134</td>
</tr>
<tr>
<td>Perissodactyla</td>
<td>Equus caballus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total domestic mammals</td>
<td></td>
<td>2810</td>
<td>86.2</td>
<td>8030</td>
</tr>
<tr>
<td>Artiodactyla</td>
<td>Bos primigenius</td>
<td>43</td>
<td>1.3</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Cervus elaphus</td>
<td>359</td>
<td>5.2</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>Capreolus capreolus</td>
<td>53</td>
<td>1.6</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Dama dama</td>
<td>1</td>
<td>0.3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Alces alces</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sus scrofa ferus</td>
<td>133</td>
<td>4.08</td>
<td>304</td>
</tr>
<tr>
<td>Rodentia</td>
<td>Castor fiber</td>
<td>10</td>
<td>0.3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sciurus vulgaris</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Lagomorpha</td>
<td>Lepus europaeus</td>
<td>3</td>
<td>0.09</td>
<td>30</td>
</tr>
<tr>
<td>Carnivora</td>
<td>Canis lupus</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Vulpes vulpes</td>
<td>1</td>
<td>0.03</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Ursus arctos</td>
<td>24</td>
<td>0.7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Martes sp.</td>
<td>2</td>
<td>0.06</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Mustela putorius</td>
<td>1</td>
<td>0.03</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Meles meles</td>
<td>2</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Felis silvestris</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Perissodactyla</td>
<td>Equus caballus</td>
<td>7</td>
<td>0.2</td>
<td>8</td>
</tr>
<tr>
<td>Total wild mammals</td>
<td></td>
<td>450</td>
<td>13.8</td>
<td>937</td>
</tr>
<tr>
<td>Total identified mammals</td>
<td></td>
<td>3260</td>
<td>100</td>
<td>8967</td>
</tr>
<tr>
<td>Mollusca+Fish+Aves</td>
<td></td>
<td>60</td>
<td>38</td>
<td>13</td>
</tr>
<tr>
<td>Total identified remains</td>
<td></td>
<td>3320</td>
<td>9005</td>
<td>2183</td>
</tr>
</tbody>
</table>

Figure 2 indicates a change in the proportion of cattle/sheep and goat during the end of the Chalcolithic. The predominance of cattle is typical for the Cucuteni A sites (Haimovici, 1987), while in the Cucuteni B assemblage, sheep and goat remains are more numerous indicating that this group contributed more to the subsistence economy. Probably, the expansion of open fields, with characteristic vegetation and dry climate, favoured sheep and goat husbandry more than cattle breeding. It is considered that during the 5th-4th millennium BC, in the range of Cucuteni culture, the annual average temperature was about 2°C higher than today (Dolukhanov 1997). The proportion of wild mammals is low and decreases from 15% in Cucuteni A level to 7% in Bronze Age. They consist of 13 species in Cucuteni A, 17 species in Cucuteni B, and 11 in Bronze Age (Table 1). As game species, red deer (Cervus elaphus) is dominant with 5%/4%/2% remains. Wild boar (Sus scrofa ferus) comes second in number of identified specimens (4%/3%/2%). We have to mention that in many other Cucuteni A assemblages red deer is also the most frequent game species (Haimovici, 1987). The identified wild mammals were grouped corresponding to ecological characteristics in: forest species (Cervus elaphus, Dama dama, Alces alces, Sus scrofa ferus, Ursus arctos, Felis silvestris, Sciurus vulgaris and Castor fiber), forest-skirts (transitional zones between forest and steppe) species (Capreolus capreolus, Lepus europaeus and Bos primigenius), and eurytopic species (Canis lupus, Vulpes vulpes, Mustela putorius, and Meles meles). Forest species are dominant in all the assemblages, in similar proportions to the forest-skirts and eurytopic species (Figure 3).

The temporal taxonomic variability of the animal resources used in the Cucuteni settlement of Poduri-Dealul Ghindaru is shown in Table 1. Similar proportions among the main mammal groups are evident in the three assemblages (Figure 4).
Figure 2 Frequencies of cattle, sheep/goat and pig remains (% NISP).

Figure 3 Distribution of wild mammal remains according to the ecological characteristics of species (% NISP).

Figure 4 Frequencies of major taxonomic mammal groups (% NISP).
Artiodactyls, the main group, served different economic (food, clothing, raw materials for tool manufacture) and ceremonial purposes. However, we have to remark a higher percentage of lagomorphs, in the Cucuteni B assemblage, that could be correlated with an expansion of open fields, with characteristic vegetation and dry climate. The horse, representing the perissodactils, has a low frequency in the Cucuteni A sample; it was very probably a rarely hunted wild species. Many authors consider that the domesticated form was not yet widespread in Europe at Chalcolithic time and appeared later in Europe, in the Bronze Age (Benecke and Von den Driesch 2003).

Conclusions
Relative large assemblages of animal remains were recovered from excavations in the Tell of Poduri-Dealul Ghindaru, being chronologically assigned to the Chalcolithic (Cucuteni A, Cucuteni B) and Bronze Age. The majority of animal remains are from mammals, and only few pieces from birds, fish and molluscs. The Chalcolithic settlements of Poduri-Dealul Ghindaru have a relative large faunal spectrum, especially in Cucuteni B (17 wild mammal species). The subsistence economy was dominated in all three settlements by domestic mammals, especially cattle, a pattern similar to other Chalcolithic and Bronze Age sites in the region. However, a change in the economy appear to the end of Chalcolithic period (in Cucuteni B), when sheep and goat became more important, probably in correlation with a drier natural environment. A Chalcolithic community with economic specialization in cattle husbandry is proposed for phase A of the Cucuteni culture. In this phase, the frequency of pig is lower (10%) than in the next periods. The NISP percentage for pig is higher towards the end of Chalcolithic, with a value of 15% and again lower in the early Bronze Age level, with a value of 13%. We may suppose that as result of an increasing mobility of people, pig production became less efficient in the early Bronze Age compared to husbandry in herding of other species such as sheep/goat.

Acknowledgments
We wish to thank archaeologists Dr. Dan Monah (Archaeological Institute of Iasi) and Dr. Gheorghe Dumitroaia (International Centre of Cucuteni Culture Research) for providing us the animal remains they excavated and important data used in this study.

This study was supported by the Romanian research program CNCS PN II RU-TE-2011-3-0146.

Contact addresses
Luminita Bejenaru
Alexandru Ioan
Cuza University Iasi
Faculty of Biology
Bd. Carol I 20A
700505 Iasi
Romania
Email: lumib@uaic.ro

Simina Stanc
Alexandru Ioan
Cuza University Iasi
Faculty of Biology
Bd. Carol I 20A
700505 Iasi
Romania
Email: siminams@yahoo.com

References

